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Abstract A detailed analysis on the characteristics of laminar flow over a bell-shaped stenosis for
a physiological pulsatile flow is presented in this study. In order to have a good understanding of
the physiological pulsatile flow, a comparison of the numerical solutions to three types of pulsatile
flows, including a physiological flow, an equivalent pulsatile flow and a pure sinusoidal flow, are
made in this work. The comparison shows that the flow behavior cannot be properly estimated if
the equivalent or simple pulsatile inlet flow is used in the study of flow fields through stenosed
arteries instead of actual physiological one. Then the physiological pulsatile flow is further studied
by considering the effect of constriction ratio of stenosis, Womersley number and Reynolds number
on the flow behavior through stenosed arteries. The analysis shows that the variation of these flow
parameters puts significant impacts on the pulsatile flow field for the physiological flow.

1. Introduction
Atherosclerosis is a disease of large and medium-sized arteries in which cells,
such as macrophages, smooth muscle cells and lipids, accumulate in the intima
layer of arteries forming focal lesions or plaques. As a plaque growswith time, it
will cause a partial reduction in the arterial cross-sectional area (stenosis). These
stenosis, or constriction, has a complex influence on blood flow through and
beyond the narrowed segment of artery. The possibility that haemodynamic
factors may participate in genesis and proliferation of atherosclerosis has
fostered increasing study of flow through arterial stenosis during the
past decades. It has been established that the development of advanced
atherosclerotic plaques may occur preferentially in high shear regions. It is,
therefore, worthwhile from the fluid dynamics point of view to study and
identify regions of very high shear and normal stresses in the flow (haemolysis),
regions of very low or very high shear stress at walls (atheromatous lesions) and
the extent of separated or reversed flow regions (thrombosis) in vascular tubes.

Numerical simulation of arterial stenosis provides an effective means of
obtaining detailed flow patterns associated with the disease. One of the first
numerical studies on this type of problem was done by Lee and Fung (1970) to
study the blood flow in locally constricted tubes for a Reynolds number range
of 0-25. A bell-shaped constriction of Gaussian normal distribution curve with
a diameter constriction of 50 per cent was used. From then on, haemodynamical
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characteristics of flow through stenosis have been continually investigated in
the past 30 years. Numerical simulation to steady flow through rigid stenoses
has been reported by many investigators (Deshpande et al., 1976; Lee, 1990,
1994; Siegel et al., 1994).

For pulsatile flow through stenosis, Back et al. (1977) presented a numerical
solution to pulsatile flow in the coronary artery ofmanwith double constrictions,
assuming a rigid boundary. O’Brien and Ehrlich (1985) numerically studied the
pulsatile flow through a constricted artery using a vorticity-streamline
formulation and reaffirmed the importance of studying unsteady rather than
steady flow. Similarly, Huang et al. (1995) simulated both steady and unsteady
flow through rigid tube with a smooth stenosis.

Most experimental and numerical studies of pulsatile flow through stenosed
arteries have been performed under the assumption of a simple periodic
variation of the inflow with time. But evidences show that the arterial flux
waves are different from a single harmonic pulse. For the physiological flow,
generally, the waveform given by McDonald (1955) for the canine femoral
artery is used. Zendehbudi and Moayeri (1999) obtained and compared the flow
fields through the constriction of a cosine function for the physiological
flow and an equivalent pulsatile flow. Deplano and Siouffi (1999) and Tu et al.
(1992) gave the numerical simulations for other types of physiological flows
that have different velocity profiles, using finite element packages. Tu and
Deville (1996) gave a further numerical study on that type of physiological flow
by considering the non-Newtonian behaviour.

In the present study, the physiological pulsatile flows in the tube with
a bell-shaped stenosis are investigated in detail. In order to have a relatively
thorough understanding of the physiological flow, a detailed analysis on the
dynamics of the flow over a bell-shaped stenosis for the physiological flow,
including the comparison of the physiological and other two pulsatile flows and
the effects that some flow parameters put on the flow field in stenosed arteries,
is presented in the current study. The problem is solved by using the method
which has been developed by Lee et al. (2001) to solve the steady and unsteady
incompressible Navier-Stokes equations in a two-dimensional, curvilinear
coordinate system. The numerical solutions are obtained under the conditions
of laminar flow, Newtonian fluid and rigid wall.

2. Governing equations and numerical procedures
2.1 Governing equations
For axially symmetric flow of incompressible Newtonian fluids, the
Reynolds-average governing equations of two-dimensional flow can be
written in axisymmetric coordinate system as follows:
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Here u and v are the velocity components in z and r directions, respectively.
Chorin (1967) developed the artificial compressibility approach for solving

steady incompressible flow. This involved modifying the governing equations
to make them fully hyperbolic by adding an unsteady term to the
mass conservation equation. The steady-state solution is not altered by
modifying the equations in this way. As shown in Lee et al. (2001), the artificial
compressibility approach has been developed to solve both steady and
unsteady flows. In the present study, the artificial compressibility formulation
developed by Lee et al. (2001) is used to solve pulsatile laminar flows through
arterial stenosis. With this method, the pseudo-unsteady terms are added to
both mass conservation equation and momentum equations. Then, the
non-dimensional governing equations of two-dimensional flow in the
conservation form can be expressed in a generalized curvilinear coordinate
system with the axisymmetric physical components taken as the dependent
variables as follows:
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In the governing equations, t is a pseudotime variable and t is the physical
time. b is an artificial compressibility parameter. The dimensionless variables
r* ¼ r=r0; z* ¼ z=r0; u* ¼ u=u0; v* ¼ v=u0; t* ¼ t=t0 and p* ¼ p=ru20
have been used and asterisks are dropped for brevity. St ¼ r0=ðu0t0Þ and
Re ¼ r0u0=g are the Strouhal and Reynolds numbers, respectively. Generally,
t0 is taken as 1/w for a pulsatile flow on the assumption that w is the angular
frequency of the pulsatile flow. Here, J is the Jacobian of the transformation.
U and V are contravariant velocities in j, h-direction is given by

U ¼ jzuþ jrv

V ¼ hzuþ hrv

and

a1 ¼ j2z þ j2r ; a2 ¼ jzhz þ jrhr; a3 ¼ h2
z þ h2

r

In deriving the equations, constant density and constant viscosity is assumed
for simplicity. As shown above, the system of governing equations can be used
to describe both steady and unsteady flows. A solution of the modified
equations that is steady in pseudotime is identical to the instantaneous
unsteady solution of the governing equations.

2.2 Numerical procedures
The governing equations are discretized using a cell-centered finite volume
method. To allow the selection of the pseudotime step Dt without regard to
stability restriction, an implicit pseudotime discretization is used for equation
(2). At the same time, the physical time-accurate term in equation (2) is
discretized in an implicit fashion by means of a second-order-accurate,
three-point backwards difference in physical time. So a prototype implicit
scheme for equation (2) can be formulated as
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where superscripts m and n are mean pseudotime and physical time,
respectively.

The Lower-Upper Symmetric-Gauss-Seidel ( LU-SGS) implicit algorithm is
used as the time integration scheme for the governing equations because of its
efficiency and stability. When constructing this scheme, the advantages of
recent advances in computational fluid dynamics are considered. The LU-SGS
method is applied with the use of upwind-biased and total variation
diminishing (TVD) scheme. To calculate the convective flux, an edge-based
method is used by calculating and storing the flux integrals based on the edges.
The convective fluxes are discretized by using the appropriate form of Roe’s
flux-difference splitting ( Lee et al., 2001; Roe, 1981). The viscous terms are
evaluated by a Gauss integration in the finite volume method way, resulting in
a second-order central differencing.

High order accuracy is obtained using Monotonic Upstream Schemes for
Conservation Laws MUSCL scheme (Hirsch, 1990), which is a nominally higher
order upwind-biased extrapolation scheme. The left and right state vectorsWL

and WR at a control volume surface of an edge i+1/2 can be evaluated using
MUSCL scheme. In order to obtain solutions satisfying TVD conditions for
suppressing excessive non-physical oscillations and ensuring the numerical
stability, functions of the flux limiter are introduced.

The details of the current numerical method for incompressible laminar
flows can be found in Lee et al. (2001). The artificial compressibility parameter
b influences both stability and efficiency in the numerical computation. As has
been referred to in Lee et al. (2001), the current scheme is found not to be
sensitive to the value of the artificial compressibility parameter and the present
code is stable for a wide range of b. In the present study, a constant value of the
parameter b has been used. For all cases, the value of b that is set to 10 is found
to give a good rate of convergence and accuracy for all of the problems
considered.

3. Geometry configuration and boundary conditions
The geometrical configuration of the vascular tube with a stenosis and its
coordinate system is shown in Figure 1. The coordinate variables (r, z) are
defined in the cylinder coordinate system; r0 is the radius of the tube having
a constant cross section; dc is the opening of the constriction; and L is the length
of the tube under consideration.
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The geometry of the stenosis may be described by the following bell-shaped
Gaussian distribution profile

f ðzÞ ¼ 12 c expð2csz
2Þ ð4Þ

where c is the constriction ratio and is equal to (D2 dc)/D and cs is a shape
constant. In the present study, cs is fixed at 4.0.

In this work, boundary conditions are imposed using halo cells that are two
rows of fictitious cells next to the boundary. With this concept the boundary
fluxes can be treated in a fashion similar to the internal fluxes. At the inflow
boundary, the velocities are specified and the pressure is extrapolated from the
interior. For internal flows at the outflow boundary the velocities are
extrapolated from the interior and a constant static pressure is imposed. On a
solid surface, the usual no-slip condition is applied. The pressure at the wall is
obtained by setting the gradient of the pressure equal to zero at the no-slip wall.

The average inlet velocity is specified according to the three types of pulsatile
flows as shown in Figure 2. Type I – physiological flow, u(t) is the same as that
given by other authors (McDonald, 1955); Type II – equivalent pulsatile flow,
uðtÞ ¼ 12 a½1þ cosðt þ dÞ�; Type III – simple pulsatile flow, i.e. pure
sinusoidal flow, uðtÞ ¼ sinðtÞ:The physiological flow is selected due to its direct

Figure 1.
The geometry of the
bell-shaped stenosis

Figure 2.
Time variation of the
velocity for the
physiological, equivalent
pulsatile and simple
pulsatile flows
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relevance with the investigation of intracardiac flow, blood vessel stenosis and
heart valvular regurgitation. The sinusoidal flow is often used in the initial
studies for pulsatile blood flow and many other engineering applications.
The equivalent pulsatile flowwas first used by Zendehbudi andMoayeri (1999).
The equivalent pulsatile flow profile is hoped to have the same stroke volume
as the physiological flow profile. After integrating, the equivalent pulsatile
flow can be obtained by setting a ¼ 0:858 and d ¼ 1:405: In Figure 2, t is
non-dimensional physical time and T is the period of the pulsatile flows.

In the present study, the dimensionless Reynolds, Strouhal and Womersley
numbers are defined, respectively, as

Re ¼
u0r0

g

Wo ¼ r0

ffiffiffi
w

g

r

St ¼
Wo2

Re
¼

r0w

u0

ð5Þ

where r0 is the radius of the tube infinitely far upstream where the section
becomes uniform; u0 is the maximum value, in the period, of the average
velocity over the section of inlet; and w is the angular frequency of the
pulsatile flow. The Womersley number is an indication of the main frequency
of the flow. In physiological situations, the frequency of the flow is determined
by the heart rate. For the physiological flow in a femoral artery of dog, the
pulsatile flow characteristics were obtained from MacDonald’s measurements
(Daly, 1976; McDonald, 1955). The frequency parameter Wo is about 3.34 while
the peak Reynolds number is about 400. So the basic Reynolds and Womersley
numbers used in the present study are set to 400 and 3.34, respectively. A large
number of computations are conducted in this work for different combinations
of the Reynolds and Womersley numbers and constriction ratio.

4. Further validation of computational results
In our earlier study (Lee et al., 2001), a variety of computed results have
been presented to validate the present numerical method and computer code.
Here two other test cases based on constricted circular tubes are considered for
further validation.

4.1 Steady laminar flow in a circular tube with a stenosis for Re¼200
In this case, the steady laminar flow in a tube with a stenosis is predicted.
The geometry of the stenosis may be described by the following profile:

r

r0
¼ 12

d

2r0

�
1þ cos

pz

z0

�
; 2z0 # z # z0 ð6Þ
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In this case, d ¼ 1=2; and z0 ¼ 1:0: The computation is done with a 201£ 41
grid. Figure 3 shows the axial velocity profiles at different axial positions for
Re ¼ 200 in comparison with the computational data obtained by Deshpande
et al. (1976). Here the Reynolds number is based on the maximum upstream
velocity. As shown in Figure 3, these velocity profiles fit the numerical results
of Deshpande et al. (1976) very well.

4.2 Simple pulsatile laminar flow inside a circular tube with a stenosis
This case deals with the simple pulsatile laminar flow inside a circular tube
with a stenosis. In this case, the geometry of the stenosis is specified by
equation (6) with d ¼ 1=4; and z0 ¼ 1:0: A simple sinusoidal pulsatile velocity
is added in the inlet

U ðtÞ ¼ 1þ sinðtÞ

with Re ¼ 50; and Wo ¼ 10: Here t is the non-dimensional physical time.
The instantaneous streamlines during one cycle for the simple sinusoidal

pulsatile flow are shown in Figure 4 at every eighth of a cycle. The current
results can be compared with those of Huang et al. (1995, Figure 6) at the same
physical time instants. For this stenosis model, there is no separation in the
steady state at Re ¼ 50: So it can be found that in the unsteady flow the flow
fields are greatly different from those in steady flow. There is no separation in
the first quarter of one cycle, even at t ¼ 0:25T when the flow reaches
peak forward value. At t ¼ 0:375T; a small vortex occurs behind the stenosis.
Then the vortex develops rapidly and there is a large recirculation region distal
to the stenosis while the separation also appears in the upstream near the
stenosis. Until t ¼ 0:75 when the flow has zero flux, the recirculation flow
occupies most of the tube volume. Then the vortices begin to weaken. By the
end of one cycle, the vortices disappear and another cycle starts again.

Figure 3.
A comparison of the
present prediction and
the computational data
of Deshpande et al. (1976)
for axial velocity profiles
at different axial
positions
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The development process of the separation described above is verified by
Huang et al. (1995) too. The comparison between the two numerical solutions
shows a very good agreement.

5. Results and analysis
In the present study, the pulsatile laminar flows in the tube with a bell-shaped
stenosis are investigated in detail. The computational domain is taken as 26
radii. A non-uniform grid, which is stretched in the height direction, is used in
the present computation. Grid independence tests show that a grid size of
181 £ 35 ðz £ rÞ is sufficient for the present range of flow investigation.
The (crude) computational grid in the stenosed region is shown in Figure 5.
The number of time steps per cycle is taken to be 80, which corresponds to a
non-dimensional real-time step Dt ¼ 2p=80: For all cases in this study, the
flow characteristics are presented only at some selected instants. The selected
instants involve four points corresponding to the conditions of initial zero, peak
forward, middle zero and peak backward flow rates, on each waveform, i.e. at
the points A, B (B1, B2, B3), C (C1, C2, C3) and D (D1, D2, D3) as shown in
Figure 2. For the physiological flow, A, B, C and D correspond to the instants 0,
0.165, 0.32 and 0.415 T. For the equivalent pulsatile flow, A, B, C and D

Figure 4.
The instantaneous

streamlines in one cycle
for the flow at Re ¼ 50,

and Wo ¼ 10

Figure 5.
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correspond to 0, 0.275, 0.55 and 0.775T. For the simple pulsatile flow, A, B, C
and D is 0, 0.25, 0.5 and 0.75T, respectively. It can be noticed that for the
physiological flow, at the instants 0, 0.32, 0.6 and 0.9 T, the net flow rates are
zero or near zero.

5.1 Comparison of numerical results for the three types of pulsatile flows
The numerical results of all three types of pulsatile flows are illustrated here for
the case of Re ¼ 400; Wo ¼ 3:34; and c ¼ 0:375: The flow field developments
of the physiological, equivalent and simple pulsatile flow are shown in
Figures 6-8. As shown in these figures, the recirculation zones occupy both
distal and proximal region; to the stenosis when the net inlet flow is zero or near
zero. The distribution of the vortices in other time levels looks analogous to
that in steady flow. For the physiological flow, the zero flow rate occurs four

Figure 6.
The instantaneous
streamlines in the tube
with a stenosis for the
physiological flow

Figure 7.
The instantaneous
streamlines in the tube
with a stenosis for the
equivalent pulsatile flow
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times in one cycle while the zero net flow occurs only twice in the same cycle for
the other two flows. So the time during which the large recirculation zones
fill most of the flow field for the physiological flow is much longer than that for
the other two pulsatile flows in one cycle. It can be found that for the simple
pulsatile flow, the flow field development in the first half cycle is symmetric
with that in the second half cycle with respect to the stenosis. This is because
the simple pulsatile inflow has a velocity waveform that is reversely symmetric
between its first and second half cycles. The flow development of the
equivalent flow is similar to that of the simple pulsatile flow because of similar
inlet velocity profiles except that the recirculation zones for the equivalent flow
are smaller than those for the simple pulsatile flow at the corresponding
instants during the second half cycle. This is due to the fact that the magnitude
of the peak backward flow rate for the equivalent pulsatile flow is only about
three-fourth of that for the simple pulsatile flow.

The mean velocity fields for the three pulsatile flows are shown in Figure 9.
The mean quantity is computed by averaging over a cycle after a stationary
state was reached. As shown in Figure 9(c), for the simple pulsatile flow, the
mean streamline contours are symmetrical with respect to the stenosis because
of the symmetrical behaviour of the sinusoidal profile. The flow zones with the
large recirculating vortices exist in both sides of the stenosis. From Figure 9(b),
it can be seen that for the equivalent pulsatile flow, there exists the strong
vortex in the distal end of the stenosis while the curving streamlines in the
proximal end of the stenosis are evidently caused by the vortices formed in
some instants. This is because the forward flow rate is higher than the
backward flow rate during one cycle for the equivalent pulsatile flow.
In contrast, for the physiological flow, the flow zone with large separation
occurs only in the region distal to the stenosis as seen in Figure 9(a) because its
forward flow rate predominates over the backward flow rate during one cycle.

The non-dimensional wall vorticity is of physiological importance since it is
proportional to wall shear stress that is often employed as indicator functions

Figure 8.
The instantaneous

streamlines in the tube
with a stenosis for the
simple pulsatile flow
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for the onset and development of arterial diseases. The instantaneous wall
vorticity distributions at the points A, B, C and D for the three pulsatile flows
are shown in Figure 10. It can be seen that the wall vorticity grows up rapidly
and reaches its peak value in the vicinity of the stenosis. For each pulsatile
flow, the magnitudes of the peak wall vorticity near the stenosis at the points B

Figure 10.
The comparison of the
instantaneous wall
vorticity distributions at
the points A, B, C and D
for the three pulsatile
flows

Figure 9.
The mean flow
characteristics by
averaging in time over
one cycle for the three
pulsatile flows
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and D are always much higher than the corresponding ones at the points A and
C. Evidently, the greater instantaneous flow rate leads to higher peak wall
vorticity for the three pulsatile flows. So we should pay main attention to
examining the flow behavior at the points B and D. The distributions of wall
vorticity for the three pulsatile flows are almost the same at point Bwhere their
flow rates are also the same and reach the positive peak value. In contrast, this
is not the case for the point D. The largest peak value of wall vorticity at
the point D occurs for the simple pulsatile flow and the smallest one for the
physiological pulsatile flow. This is due to the fact that the magnitude of
the backward flow rate for the physiological flow is just about one-third or
one-fourth as large as that for the equivalent pulsatile flow or that for the
simple pulsatile flow, respectively.

The time-averaged wall vorticity in one cycle for the three pulsatile flows are
shown in Figure 11(a). It can be seen that the equivalent and simple pulsatile
flows have almost the same positive peak mean wall vorticity while the
positive peak mean wall vorticity for the physiological flow is nearly one half
as large as those for these two pulsatile flows. At the same time, the largest
negative mean wall vorticity occurs for the simple pulsatile flow while
the smallest one appears for the physiological flow. Figure 11(b) shows the
maximum instantaneous wall vorticity distribution which is composed of
the instantaneous wall vorticity with the maximum absolute value in the whole
cycle at every position along the wall. It can be found that the positive peak
wall vorticity for the physiological flow is a bit higher than those in the other
two pulsatile flows. But the differences between them are very small. The
negative peak maximum wall vorticity distribution has similar trend to
negative peak mean wall vorticity distribution. So it can be concluded that the
peak value and variation range (maximum minus minimum) of wall vorticity
will be overestimated if the equivalent or simple pulsatile inflow is used instead
of the actual physiological one in the study of the arterial flow through stenosis.

At the points B and D, there exists the peak flow rates which put more
distinguished impact on the flow field developments than the zero flow
rates at the points A and C. So only the instantaneous wall pressure

Figure 11.
The wall vorticity

distribution in one cycle
for the physiological,
equivalent flow and

simple pulsatile flows
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distributions at the points B and D for the three pulsatile flows are shown
in Figure 12. The pressures at both points A and C (not shown here)
almost linearly change (decrease or increase) along the tube wall. In
contrast, at the points B and D, the flow has a large pressure drop in the
passing the stenosis and pressure recovers partially in the downstream
region of the stenosis in the flow direction. At the point B, the variation of
wall pressures along the wall has almost the same trend for the three
pulsatile flows while at the point D, the largest wall pressure drop occurs
for the simple pulsatile flow and the smallest for the physiological flow.
The wall pressure drop for the physiological flow is much less than those
for the other two pulsatile flows at the point D.

This centerline velocity is also an important parameter in the study of
pulsatile flow fields. The distributions of velocity along the centerline for the
three pulsatile flows are shown in Figure 13 at the points B and D. From this
figure, it can be found that for the three pulsatile flows, the peak centerline
velocity at the points B and D all occurs at a position slightly downstream of
the throat in the inflow direction. At the point B, the distributions of the
centerline velocity are the same for the three pulsatile flows and the velocity
recovers very slowly after passing through the stenosis. This illustrates that

Figure 12.
The comparison of the
instantaneous wall
pressure distributions at
the points B and D for the
three pulsatile flows

Figure 13.
The comparison of the
instantaneous centerline
velocity distributions at
the points B and D for the
three pulsatile flows
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a large recirculation zone exists behind the stenosis and leads to the decrease
of the actual flow section. At the point D, the largest magnitude of peak
centerline velocity occurs for the simple pulsatile flow and the smallest for
the physiological flow. Actually, the characteristics of the centerline velocity
distribution are tightly related to the flow rate and the distribution of the
recirculating vortices in the instantaneous flow fields for the pulsatile flows.

According to the above discussion, the flow characteristics of the
physiological flow have distinct differences from those of the other two
pulsatile flows while the flow patterns of the other two flows are similar to each
other. At the instants where the net flow rate is zero, the recirculation zones
always prefer to simultaneously occur both proximal and distal to the stenosis
for these pulsatile flows. For the physiological flow, therefore, the large
recirculation zones that fill most of flow field appear more frequently. It can be
found that the flow field characteristics of the three pulsatile flows are very
similar at the peak forward flow rate. At the peak backward flow rate, however,
the magnitudes of negative peak values of the flow variables examined here for
the physiological flow are always much less than those for the other two
pulsatile flows. Furthermore, the peak values and variation range of mean and
instantaneous wall vorticity for the equivalent and simple pulsatile flows are
larger than those for the physiological flow. So the flow characteristics cannot
be properly estimated if the equivalent or simple pulsatile inlet flow is used in
the study of pulsatile arterial flow through stenosis instead of the actual
physiological one.

5.2 Numerical research for the physiological pulsatile flow
In order to have a deeper understanding of the physiological flow, we
further consider the effects that the constriction ratio, Womersley number
and Reynolds number put on the flow fields. Here the physiological flow at
Re ¼ 400; Wo ¼ 3:34 and c ¼ 0:375 is considered as a basic case which has
been discussed above.

5.2.1 The effect of constriction ratio. It is well known that the constriction
ratio has a great influence on the flow field through the stenosed artery for
steady flow. In the present study, how the characteristics of the flow vary with
the variation of constriction ratios are discussed for the physiological flow.
Other two constriction ratios c ¼ 0:5 and 0.6 are considered here with the same
Reynolds and Womersley numbers as those in the basic case. The flow
developments for the constriction ratios c ¼ 0:5 and 0.6 have no significant
differences from that for c ¼ 0:375: So only streamline contours for c ¼ 0:5
are shown in Figure 14. It can be found that flow development for c ¼ 0:5 is
very similar to that for c ¼ 0:375: With increasing constriction ratio, however,
the corresponding recirculation zone in the flow field becomes larger and
stronger.
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The time-averaged wall vorticity and maximum instantaneous wall vorticity
distributions in one cycle for c ¼ 0:375; 0.5 and 0.6 are shown in Figure 15.
From Figure 15, we can find that whether for mean wall vorticity or maximum
instantaneous wall vorticity, the largest value and variation range in one cycle
depend monotonically on the constriction ratio c. The peak value of wall
vorticity increases dramatically with the increasing constriction ratio.
The constriction ratios c ¼ 0:375; 0.5 and 0.6 correspond to the 61, 75 and 84
per cent area reduction, respectively. Although the differences of area reduction
caused by different constriction ratios are not so large, the peak value of wall
vorticity for c ¼ 0:6 is more than four times higher than that for c ¼ 0:375 and
two times higher than that for c ¼ 0:5: So the severe stenosis can lead to the
rapid growth of the peak wall vorticity, which is very similar to the situation in
steady flow.

The general nature of the pressure field can be suggested by its variation
along the centerline of the artery. Figure 16 shows the variations of centerline

Figure 15.
The wall vorticity
distribution in one cycle
at different constriction
ratios for the
physiological flow

Figure 14.
The instantaneous
streamlines in the tube
with a stenosis for the
physiological flow with
the constriction ratio
c ¼ 0.5
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pressure for the three constriction ratios at different instants in one cycle.
As shown in Figure 16(a)-(c), for all the three constriction ratios, the variation
of pressure at t ¼ 0:165T is the largest among all the selected instants because
of the largest flow rate. At this instant, the pressure decreases greatly through
the stenosis and recovers partially downstream of the stenosis. It can be seen
that more severe stenosis leads to a larger pressure drop through the stenosis.
At almost all instants, the pressure varies in a greater range for the more severe
stenosis.

According to the above analysis, the constriction ratio contributes distinct
effect on the flow field for the physiological flow. In general, the severe stenosis

Figure 16.
The instantaneous
centerline pressure

distribution at different
constriction ratios for the

physiological flow

Studies of
physiological
pulsatile flow

705



can lead to great recirculation zones in the flow fields and cause the flow
variables considered here, such as peak wall vorticity and centerline pressure
drop, to increase dramatically.

5.2.2 The effect of Womersley number. In order to study the effect of varying
Wo, the physiological flows for the Womersley numbers from 0 to 10 with the
same Reynolds number and constriction ratio are considered here. In this
study, the flow fields for Wo ¼ 2 and 6 with the same Re ¼ 400; and c ¼ 0:375
are shown in Figure 17(a) and (b), respectively. By comparing the streamlines
at the corresponding time level in Figures 17 and 6, we can find that the flow
patterns for Wo ¼ 2 are very similar to those for Wo ¼ 3:34 except that the
vortex for Wo ¼ 3:34 is a bit shorter than that for Wo ¼ 2 at the corresponding
instant. In contrast, the flow patterns for Wo ¼ 6 are greatly different from
those for Wo ¼ 2 and 3.34. During systole, the flow patterns for Wo ¼ 6 are
also similar to those for Wo ¼ 3:34: However, the vortex for Wo ¼ 6 is much
shorter than that for Wo ¼ 3:34 at the same instant, such as the instant 0.075
and 0.165 T. More significant differences between them are found during
diastole. At t ¼ 0:415 and 0.6 T, the flow fields for Wo ¼ 6 are more complex
and there are more attached vortices to form in comparison with those
for Wo ¼ 2 and 3.34. At t ¼ 0:8T; a vortex appears proximal to stenosis for

Figure 17.
The instantaneous
streamlines in the tube
with a stenosis at
different Womersley
numbers for the
physiological flow
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Wo ¼ 6 while the streamlines run quite smoothly in the whole flow field
for Wo ¼ 2 and 3.34.

The variation in the time-averaged wall vorticity and maximum
instantaneous wall vorticity distributions in one cycle is shown in Figure 18.
The wall vorticity distribution of a quasi-unsteady flow ðWo ¼ 0Þ for the same
Reynolds number is also shown in Figure 18 together with those for the other
three Womersley numbers. The pulsatile flow patterns for a quasi-unsteady
flow are the same as those in the steady flow at the same instantaneous
Reynolds numbers. As shown in Figure 18, whether for mean wall vorticity
distribution or for maximum instantaneous wall vorticity distribution,
the largest value and variation range in one cycle slightly increase with the
increasing Womersley number. But the differences are very small. As a whole,
the distributions of wall vorticity are not significantly affected by the variation
of the Womersley number.

The pressure data are treated again and shown in Figure 19. From
Figures 16(a) and 19(a) and (b) it can be seen that the developments of
centerline pressure distribution have similar trend for different Womersley
numbers. The variation of centerline pressure through the stenosis reaches the
largest value at t ¼ 0:165T for each Womersley number. At the same time,
the pressure drop through the stenosis at t ¼ 0:165T increases slightly with the
increase in Womersley number. Besides, it can be found that at most instants,
the pressure values vary in a greater range with the increasing Womersley
number.

During systole, the blood is pumped out of the heart with forward flow rate.
The magnitude of the flow rate during systole is much greater than that during
diastole and the forward flow rate predominates in the periodic development of
the flow field. Hence, the variations of the reattachment length during systole
for the Womersley numbers from 0 to 10 with the Reynolds number 400
are shown in Figure 20. In cases of multiple vortices, the one considered is
that closest to the stenosis. In the low Wo-range, such as Wo ¼ 0:6 and 1
in Figure 20(a), the vortex oscillates back and forth during the systole

Figure 18.
The wall vorticity

distribution in one cycle
at different Womersley

numbers for the
physiological flow

Studies of
physiological
pulsatile flow

707



and remains attached to the stenosis. The inertia acquired by the vortex is not
sufficient to detach it. In this range, the pulsatile flow resembles steady flow
and the pulsatile flow patterns are comparable to those in the quasi-unsteady
flow (i.e. when Wo ¼ 0). However, the variations of the reattachment length for
Wo ¼ 0:6 and 1 are a bit out of phase with that for the quasi-unsteady flow.
Figure 20(b) shows that the variations of the reattachment length in the
relatively high Wo-range (with Wo . 2). In this range, the vortex grows up
rapidly without oscillating during systole and is washed out from the
downstream end. So during the final phase of the systole, the reattachment
length is not detectable. In this Wo-range, the growth of the reattachment
length is slower for the higher Womersley number. Furthermore, at the same
instant, the reattachment length reduces with the increasing Womersley
number. It can be found that during the deceleration phase, the vortex can
continue to grow up in size and move downstream. Therefore, the flow
deceleration is an important factor in vortex formation and translation for
the comparatively high Womersley number. Figure 20(b) also shows that the
inception time of the vortex is strongly dependent on the values of
the Womersley number. The vortex inception time is later for the higher
Womersley number.

So it can be concluded that the frequency number Wo has evident effects on
the unsteady flow fields. The larger Womersley number will make the flow

Figure 19.
The instantaneous
centerline pressure
distribution at different
Womersley numbers for
the physiological flow
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field more complex and cause flow variables to vary in a greater range. Totally,
however, the distribution of wall vorticity is not significantly affected.
The vortex development in the physiological flow field is strongly dependent
on the variation of the Womersley number. At the corresponding instant
during systole, the reattachment length reduces with the increasingWomersley
number. During the deceleration phase of the systole, the vortex can continue to
grow in size and move downstream for the comparatively high Womersley
number.

5.2.3 The effect of Reynolds number. The Reynolds number has a great
influence on the flow field in the stenosed tube for a steady flow. The effect
of the Reynolds number on the physiological pulsatile flow is discussed here.
The Reynolds numbers 100, 200 and 400 are considered here with the
Womersley number and constriction ratio fixed to 3.34 and 0.375, respectively.
Figure 21 shows the details of the flow fields for Re ¼ 200: Although the flow
field developments for the Reynolds numbers 100 and 200 seem similar to those
for the Reynolds number 400, the variation of Reynolds number still puts great
impact on the flow patterns of the physiological flow. Comparing Figure 21

Figure 20.
The reattachment length

during systole at
different Womersley

numbers for the
physiological flow
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with Figure 6, it can be seen that the recirculation zones proximal to the
stenosis only appear together with the recirculation zones distal to the stenosis
at the instants when the net flow rates approach zero. At other instants, the
strength and size of the vortex caused by stenosis increase with the increasing
Reynolds number.

The mean streamline contours for the Re ¼ 100; 200 and 400 are shown in
Figure 22(a)-(c), respectively. Referring to Figure 22, a circulation zone is
formed behind the stenosis for all the three Reynolds numbers and the vortex
length increases with increasing Reynolds number, which is consistent with the
characteristics of the steady flow.

The time-averaged and maximum instantaneous wall vorticity distributions
in one cycle for Re ¼ 100; 200 and 400 are displayed in Figure 23. For the two
computed wall vorticity distributions, the peak value and the variation range
of wall vorticity evidently grow with the increasing Reynolds number.

Figure 22.
Mean flow
characteristics by
averaging in time over
one cycle at different
Reynolds numbers for
the physiological flow

Figure 21.
The instantaneous
streamlines in the tube
with a stenosis at
Re ¼ 200 for the
physiological flow
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Therefore, the high Reynolds number leads to the large instantaneous and
mean peak wall vorticity.

So, the variation of the Reynolds number can significantly affect the flow
behaviours for the physiological pulsatile flow. Generally, the strength and size
of the vortex caused by stenosis grows with the increasing Reynolds number.
The high Reynolds number can cause peak wall vorticity to increase evidently.
The variation of Reynolds number has analogous influences on the
time-averaged flow characteristics for the physiological pulsatile flow with
those for steady flows.

6. Conclusions
The numerical solutions to three types of pulsatile flows through a bell-shaped
arterial stenosis have been obtained in the present study. The detailed analysis
on the characteristics of laminar flows over an arterial stenosis under the
physiological flow conditions, including the comparison of the physiological
pulsatile flow and two other pulsatile flows and the effects that some important
flow parameters put on the physiological flow fields in stenosed arteries, is
presented in this paper.

The comparison of the three pulsatile flows shows that the flow patterns of
the physiological flow have distinct differences from those of the other two
pulsatile flows while the flow patterns of the other two flows are similar to each
other. At the instants where the net flow rate is zero, the recirculation zones
always prefer to simultaneously occur at both proximal and distal to the
stenosis for these pulsatile flows. For the physiological flow, therefore, the large
recirculation zones that fill most of the flow field appear more frequently. It can
be found that the flow field characteristics of the three pulsatile flows are very
similar at the peak forward flow rate while at the peak backward flow rate, the
magnitudes of negative peak values of the flow variables examined for
the physiological flow are always much less than those for the other two
pulsatile flows. Furthermore, the peak values and variation range of mean and
instantaneous wall vorticity for the equivalent and simple pulsatile flow are

Figure 23.
The wall vorticity

distribution in one cycle
at different Reynolds

numbers for the
physiological flow
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larger than those for the physiological flow. So the flow characteristics cannot
be properly estimated if the equivalent or simple pulsatile inlet flow is used in
the study of pulsatile arterial flow through stenosis instead of actual
physiological one.

The structure of the flow fields for different constriction ratios has no
significant differences under the current flow conditions except that more
severe stenoses may lead to larger and stronger vortices in the flow field. The
peak value and variation range of wall vorticity in one cycle depends
monotonically on the constriction ratio c. The severe stenosis can cause wall
vorticity to grow rapidly. Similarly, the pressure has greater variation ranges
at most instants with the increasing constriction ratio. Generally, severe
stenosis will make the flow variables vary more sharply. The Womersly
number has significant effects on the unsteady flow field. With the Womersley
number increasing, the structure of the flow field becomes more complex and
there are more attached vortices to form. Furthermore, the values of the
pressure vary in a greater range in one cycle and the pressure drop through the
stenosis becomes slightly larger with the increasing Womersley number.
However, the Womersley number has relatively small effects on the wall
vorticity. The vortex development in the physiological flow field is strongly
dependent on the variation of the Womersley number. At the corresponding
instant during systole, the reattachment length reduces with the increasing
Womersley number. During the deceleration phase of systole, the vortex may
continue to grow in size and move downstream. The variation of the Reynolds
number puts a great impact on the flow behaviors of the physiological pulsatile
flow. Usually, the strength and size of the vortex caused by stenosis grow with
the increasing Reynolds number. The high Reynolds number can cause peak
wall vorticity to increase evidently. The variation of the Reynolds number has
analogous influences on the time-averaged flow characteristics for the
physiological pulsatile flow with those for steady flows.
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